
Quantum ML Classifier

Student: Gio Abou Jaoude gga222@nyu.edu Mentor: Avery Leider al43110n@pace.edu

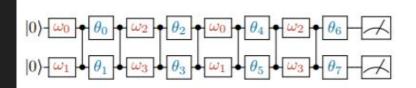
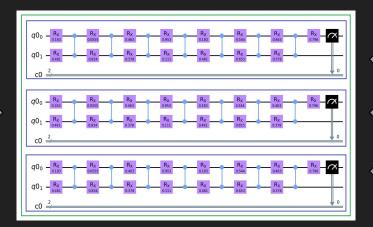


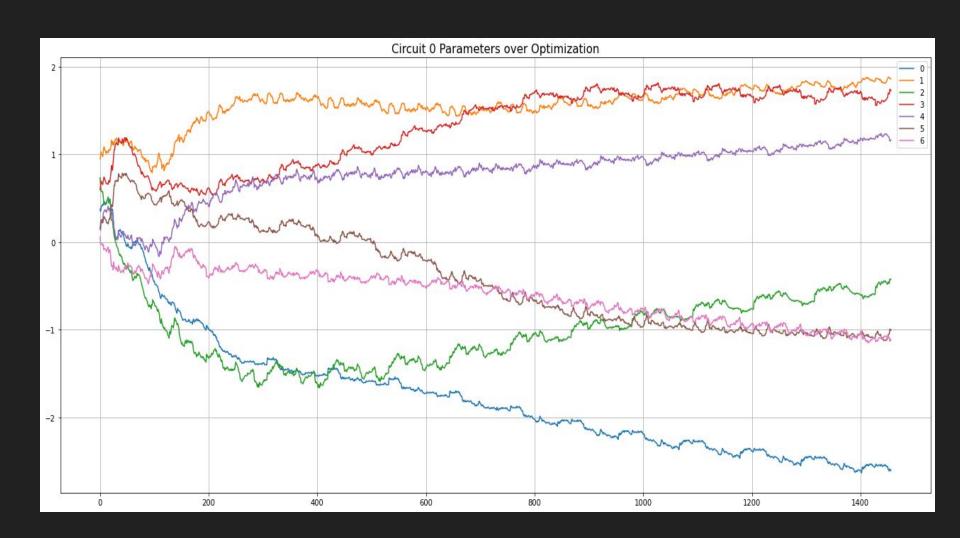
Fig. 7. The quantum circuit for the classification of Iris dataset. Vector ω encodes for (sepal length, sepal width, petal length, petal width). Note that the features are *re-uploaded*.

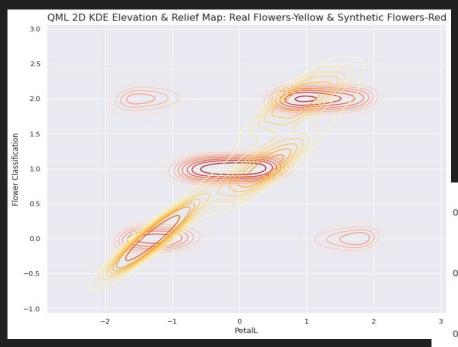
Polyadic Quantum Classifier


William Cappelletti, Rebecca Erbanni and Joaquín Keller *Entropica Labs*, Singapore {william, rebecca, joaquin}@entropicalabs.com

$$abla_{ heta_i} \langle \hat{B}
angle (oldsymbol{ heta}) = rac{1}{2} \left[\langle \hat{B}
angle \left(oldsymbol{ heta} + rac{\pi}{2} \hat{\mathbf{e}}_i
ight) - \langle \hat{B}
angle \left(oldsymbol{ heta} - rac{\pi}{2} \hat{\mathbf{e}}_i
ight)
ight]$$

Row of Data: $X_0 X_1 X_2 X_3$ $target_4 = 0$

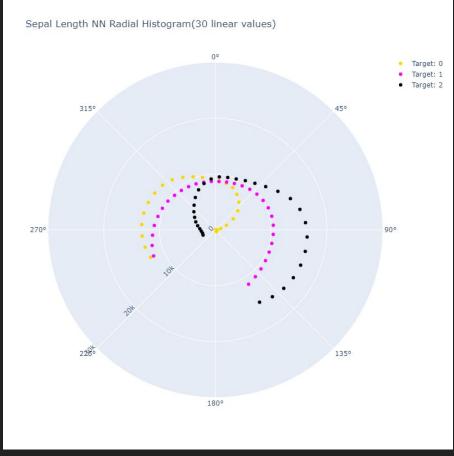

Train



Positive gradient

Negative gradient

Negative gradient


	SepalL	SepalW	PetalL	PetalW	SynthPrediction 0.0
0	-1.970024	-2.533947	-1.667576	-1.547076	0.0
1	-1.970024	-2.533947	-1.667576	-1.307136	0.0
2	-1.970024	-2.533947	-1.667576	-1.067195	0.0 0.0
3	-1.970024	-2.533947	-1.667576	-0.827254	0.0
4	-1.970024	-2.533947	-1.667576	-0.587313	0.0

50620	2.592019	3.190775	1.885832	0.852332	2.0
50621	2.592019	3.190775	1.885832	1.092273	2.0
50622	2.592019	3.190775	1.885832	1.332214	2.0
50623	2.592019	3.190775	1.885832	1.572155	2.0
50624	2.592019	3.190775	1.885832	1.812096	2.0

[50625 rows x 5 columns]

Quantum Machine Learning: Goals

Original

- Noisy quantum circuit simulation
- b. Natural language processing using quantum computing

2. Final

- Replicate neural network calculus using quantum computing
- b. Develop a reproducible classification model
- c. Analyze the classification decision boundaries

Quantum Machine Learning: Timeframe

Quantum Machine Learning: Accomplishments

Accepted for publication

- Established pipeline with institutions
 - CAREERS → Pace University Career Services

Research continuation at new Pace University lab

Quantum Machine Learning: Good, Bad & Quantum

- Good
 - Rensselaer Polytechnic Institute (AiMOS)
 - Publishing and presenting
 - Slack
 - Circuit development and testing

- Bad
 - Stipends
 - Volume of research

Quantum Machine Learning: Publications

Future of Information and Communications Conference (FICC) 2022:

"Quantum Machine Learning Classifier"

https://saiconference.com/FICC

Quantum Machine Learning: Contributions

Github: https://github.com/Gio-AbouJaoude/QML-CLassifier

CI AiMOS Doc:

https://docs.google.com/document/d/1XVTtWfKOCxxq-yBZ3ZBT9Zcna04OSZHo5cGS1AS2o8Q/edit?usp=sharing