Thrust resources
0
Thrust is a CUDA library that optimizes parallelization on the GPU for you. The Thrust tutorial is great for beginners. The documentation is helpful for anyone using Thrust.
QGIS Processing Executor
0
Running QGIS tools from the command line
Vulkan Support Survey across Systems
0
It's not uncommon to see beautiful visualizations in HPC center galleries, but the majority of these are either rendered off the HPC or created using programs that run on OpenGL or custom rasterization techniques. To put it simply the next generation of graphics provided by OpenGL's successor Vulkan is strangely absent in the super computing world. The aim of this survey of available resources is to determine the systems that can support Vulkan workflows and programs. This will assist users in getting past some of the first hurdles in using Vulkan in HPC contexts.
MATLAB bioinformatics toolbox
0
Bioinformatics Toolbox provides algorithms and apps for Next Generation Sequencing (NGS), microarray analysis, mass spectrometry, and gene ontology. Using toolbox functions, you can read genomic and proteomic data from standard file formats such as SAM, FASTA, CEL, and CDF, as well as from online databases such as the NCBI Gene Expression Omnibus and GenBank.
The Theory Behind Neural Networks (Very Simplified)
0
This video by the YouTube channel 3Blue1Brown provides a very simplified introduction to the theory behind neural networks. This tutorial is perfect for those that don't have much linear algebra or machine learning background and are eager to step into the realm of ML!
Online Bachelor's in Data Science Program Guide - TechGuide
0
The realm of data science is one that onlookers regard with curiosity and respect. There are a lot of unknowns in this area of study that only recently became hugely relevant. It is important to get the facts on how expertise in data science is transforming the world. This article features what a bachelor’s degree means in today’s market and the future.
Application Fundamentals (Android)
0
The provided text discusses various aspects of Android app development fundamentals. It covers key concepts related to app components, the AndroidManifest.xml file, and app resources. Android apps are built using various components, including Activities, Services, Broadcast Receivers, and Content Providers. These components serve different purposes and have distinct lifecycles. Activities are used for user interaction, services for background tasks, broadcast receivers for system-wide event handling, and content providers for managing shared data.The AndroidManifest.xml file is essential for declaring app components, permissions, and other settings. It informs the Android system about the app's components and capabilities. For instance, it specifies the minimum API level, declares hardware and software requirements, and defines intent filters to enable components to respond to specific actions.It's crucial to declare app requirements, such as device features and minimum Android API levels, to ensure compatibility with different devices and configurations. These declarations help in filtering the app's availability on Google Play for users with compatible devices.Android apps rely on resources separate from code, including images, layouts, strings, and more. These resources are stored in various directories and can be tailored for different device configurations. Providing alternative resources allows for optimization across different languages, screen sizes, orientations, and other factors.
Understanding these fundamentals is essential for developing Android applications effectively, ensuring compatibility, and providing a consistent user experience across a wide range of devices and configurations.
Open Storage Network
0
The Open Storage Network, a national resource available through the XSEDE resource allocation system, is high quality, sustainable, distributed storage cloud for the research community.
Containerization Explained
0
Containerization is a software development method in which applications are packaged into standard units for development, shipment, and deployment.
What is fairness in ML?
0
This article discusses the importance of fairness in machine learning and provides insights into how Google approaches fairness in their ML models.
The article covers several key topics:
Introduction to fairness in ML: It provides an overview of why fairness is essential in machine learning systems, the potential biases that can arise, and the impact of biased models on different communities.
Defining fairness: The article discusses various definitions of fairness, including individual fairness, group fairness, and disparate impact. It explains the challenges in achieving fairness due to trade-offs and the need for thoughtful considerations.
Addressing bias in training data: It explores how biases can be present in training data and offers strategies to identify and mitigate these biases. Techniques like data preprocessing, data augmentation, and synthetic data generation are discussed.
Fairness in ML algorithms: The article examines the potential biases that can arise from different machine learning algorithms, such as classification and recommendation systems. It highlights the importance of evaluating and monitoring models for fairness throughout their lifecycle.
Fairness tools and resources: It showcases various tools and resources available to practitioners and developers to help measure, understand, and mitigate bias in machine learning models. Google's TensorFlow Extended (TFX) and What-If Tool are mentioned as examples.
Google's approach to fairness: The article highlights Google's commitment to fairness and the steps they take to address fairness challenges in their ML models. It mentions the use of fairness indicators, ongoing research, and partnerships to advance fairness in AI.
Overall, the article provides a comprehensive overview of fairness in machine learning and offers insights into Google's approach to building fair ML models.
Moving-Lid-Driven Flow Simulation by Finite Difference Method
0
The listed repository contains code written in C++ to model the flow inside a cavity with a lid moving above from left to right by discretizing incompressible N-S equations with finite difference method. For the governing equations, artificial viscosity has been considered to increase the stability. In terms of solving the resulted algebraic equation system, both the Point Jacobi Method and Symmetric Gauss Seidel methods have been used for the iteration process.
Machine Learning with sci-kit learn
0
In the realm of Python-based machine learning, Scikit-Learn stands out as one of the most powerful and versatile tools available. This introductory post serves as a gateway to understanding Scikit-Learn through explanations of introductory ML concepts along with implementations examples in Python.
NITRC
0
The Neuroimaging Tools and Resources Collaboratory (NITRC) is a neuroimaging informatics knowledge environment for MR, PET/SPECT, CT, EEG/MEG, optical imaging, clinical neuroinformatics, imaging genomics, and computational neuroscience tools and resources.
Data Visualization Tools for Julia
0
Plots.jl is the most widely used plotting library for the Julia programming language. It's known for being especially powerful in its versatility and intuitiveness. It's limited set of dependencies and wide applicability across different graphics packages make it especially helpful in visualizing the results of your latest Julia implementation.
However, there are still multiple options available for Julia programmers to visualize their datasets. The second link details a comparison against a variety of Julia packages.
fast.ai
0
Fastai offers many tools to people working with machine learning and artifical intelligence including tutorials on PyTorch in addition to their own library built on PyTorch, news articles, and other resources to dive into this realm.
Spack Documentation
0
Spack is a package manager for supercomputers that can help administrators install scientific software and libraries for multiple complex software stacks.
Chameleon
0
Chameleon is an NSF-funded testbed system for Computer Science experimentation. It is designed to be deeply reconfigurable, with a wide variety of capabilities for researching systems, networking, distributed and cluster computing and security.
NCSA HPC-Moodle
0
Self-paced tutorials on high-end computing topics such as parallel computing, multi-core performance, and performance tools. Some of the tutorials also offer digital badges.
How-To Video: Apply for an ACCESS Allocation
0
ACCESS Allocations website tour, and how to apply for allocations.
UCLA Extended Reality (XR) collaboration resources and Workshop
0
Comprehensive Extended Reality (XR) collaboration resources for building a high performance extended reality (XR), augmented reality (AR), virtual reality (VR) and mixed reality campus teams. The tags set are a small subset of the the topics covered.
ACCESS Video Learning Center
0
A library of short videos about ACCESS allocations, resources and support.
DELTA Introductory Video
0
Introductory video about DELTA. Speaker Tim Boerner, Senior Assistant Director, NCSA
Oakridge Leadership Computing Facility (OLCF) Training Events and Archive
0
Upcoming training events and archives of training materials detailing general HPC best practices as well as how to use OLCF resources and services.
Anvil Documentation
0
Documentation for Anvil, a powerful supercomputer at Purdue University that provides advanced computing capabilities to support a wide range of computational and data-intensive research spanning from traditional high-performance computing to modern artificial intelligence applications.
Python Tools for Data Science
0
Python has become a very popular programming language and software ecosystem for work in Data Science, integrating support for data access, data processing, modeling, machine learning, and visualization. In this webinar, we will describe some of the key Python packages that have been developed to support that work, and highlight some of their capabilities. This webinar will also serve as an introduction and overview of topics addressed in two Cornell Virtual Workshop tutorials, available at https://cvw.cac.cornell.edu/pydatasci1 and https://cvw.cac.cornell.edu/pydatasci2