Texas A&M HPRC Training Site
0
Training Resources and Courses offered by Texas A&M's Research Computing Group
Automated Machine Learning Book
0
The authoritative book on automated machine learning, which allows practitioners without ML expertise to develop and deploy state-of-the-art machine learning approaches. Describes the background of techniques used in detail, along with tools that are available for free.
OpenMP Tutorial
0
OpenMP (Open Multi-Processing) is an API that supports multi-platform shared-memory multiprocessing programming in C, C++, and Fortran on many platforms, instruction-set architectures and operating systems, including Solaris, AIX, FreeBSD, HP-UX, Linux, macOS, and Windows. It consists of a set of compiler directives, library routines, and environment variables that influence run-time behavior.
Spatial Data Science in the Cloud (Alpine HPC) using Python
0
Spatial Data Science is a growing field across a wide range of industries and disciplines. The open-source programming language Python has many libraries that support spatial analysis, but what do you do when your computer is unable to tackle the massive file sizes of high-resolution data and the computing power required in your analysis?
There materials have been prepared to teach you spatial data science and how to execute your analysis using a high-performance computer (HPC).
Master’s in Cybersecurity Degree Essentials
0
Offers comprehensive information on various master's degree options in cybersecurity, including program details, admission requirements, and career opportunities, helping students make informed decisions about pursuing an advanced degree in cybersecurity.
What is fairness in ML?
0
This article discusses the importance of fairness in machine learning and provides insights into how Google approaches fairness in their ML models.
The article covers several key topics:
Introduction to fairness in ML: It provides an overview of why fairness is essential in machine learning systems, the potential biases that can arise, and the impact of biased models on different communities.
Defining fairness: The article discusses various definitions of fairness, including individual fairness, group fairness, and disparate impact. It explains the challenges in achieving fairness due to trade-offs and the need for thoughtful considerations.
Addressing bias in training data: It explores how biases can be present in training data and offers strategies to identify and mitigate these biases. Techniques like data preprocessing, data augmentation, and synthetic data generation are discussed.
Fairness in ML algorithms: The article examines the potential biases that can arise from different machine learning algorithms, such as classification and recommendation systems. It highlights the importance of evaluating and monitoring models for fairness throughout their lifecycle.
Fairness tools and resources: It showcases various tools and resources available to practitioners and developers to help measure, understand, and mitigate bias in machine learning models. Google's TensorFlow Extended (TFX) and What-If Tool are mentioned as examples.
Google's approach to fairness: The article highlights Google's commitment to fairness and the steps they take to address fairness challenges in their ML models. It mentions the use of fairness indicators, ongoing research, and partnerships to advance fairness in AI.
Overall, the article provides a comprehensive overview of fairness in machine learning and offers insights into Google's approach to building fair ML models.
Data Imputation Methods for Climate Data and Mortality Data
0
This slices and videos introduced how to use K-Nearest-Neighbors method to impute climate data and how to use Bayesian Spatio-Temporal models in R-INLA to impute mortality data. The demos will be added soon.
OnShape FeatureScripts: Custom features for everyone
0
OnShape FeatureScripts allow users to create their own features via OnShape's programming language. The user can make these as simple or complex as they need, and they can save tons of time for heavy OnShape users or complex projects!
Astronomy data analysis with astropy
0
Astropy is a community-driven package that offers core functionalities needed for astrophysical computations and data analysis. From coordinate transformations to time and date handling, unit conversions, and cosmological calculations, Astropy ensures that astronomers can focus on their research without getting bogged down by the intricacies of programming. This guide walks you through practical usage of astropy from CCD data reduction to computing galactic orbits of stars.
Introduction to Probabilistic Graphical Models
0
This website summarizes the notes of Stanford's introductory course on probabilistic graphical models.
It starts from the very basics and concludes by explaining from first principles the variational auto-encoder, an important probabilistic model that is also one of the most influential recent results in deep learning.
Neural Networks in Julia
0
Making a neural network has never been easier! The following link directs users to the Flux.jl package, the easiest way of programming a neural network using the Julia programming language. Julia is the fastest growing software language for AI/ML and this package provides a faster alternative to Python's TensorFlow and PyTorch with a 100% Julia native programming and GPU support.
Why 'N How: Martinos Center for Biomedical Imaging:
0
The Why & How seminar series is designed to introduce research assistants, graduate students, and postdoctoral and clinical fellows – really, anyone who is interested – to the many tools used in medical imaging. These include software tools and most of the major imaging modalities wielded by investigators (MRI, PET, EEG, MEG, optical, TMS and others). As the name of the series suggests, the talks cover both the reasons researchers might need a particular tool and the nuts and bolts of how to apply it. You can watch videos of the overviews below.
DeepChem
0
DeepChem is an open-source library built on TensorFlow and PyTorch. It is helpful in applying machine learning algorithms to molecular data.
Thrust resources
0
Thrust is a CUDA library that optimizes parallelization on the GPU for you. The Thrust tutorial is great for beginners. The documentation is helpful for anyone using Thrust.
Trusted CI Resources Page
0
Very helpful list of external resources from Trusted CI
Long Tales of Science: A podcast about women in HPC
0
A series of interviews with women in the HPC community
Vulkan Support Survey across Systems
0
It's not uncommon to see beautiful visualizations in HPC center galleries, but the majority of these are either rendered off the HPC or created using programs that run on OpenGL or custom rasterization techniques. To put it simply the next generation of graphics provided by OpenGL's successor Vulkan is strangely absent in the super computing world. The aim of this survey of available resources is to determine the systems that can support Vulkan workflows and programs. This will assist users in getting past some of the first hurdles in using Vulkan in HPC contexts.
CUDA Toolkit Documentation
0
NVIDIA CUDA Toolkit Documentation: If you are working with GPUs in HPC, the NVIDIA CUDA Toolkit is essential. You can access the CUDA Toolkit documentation, including programming guides and API references, at this provided website
EasyBuild Documentation
0
EasyBuild is a software installation framework that allows administrators to easily build and install software on high-performance computing (HPC) systems. It supports a wide range of software packages, toolchains, and compilers.
Supported software are found in the EasyConfigs repository, one of several resositories in EasyBuild project.
Slurm User Group Mailing List
0
Biopython Tutorial
0
The Biopython Tutorial and Cookbook website is a dedicated online resource for users in the field of computational biology and bioinformatics. It provides a collection of tutorials and practical examples focused on using the Biopython library.
The website offers a series of tutorials that cover various aspects of Biopython, catering to users with different levels of expertise. It also includes code snippets and examples, and common solutions to common challenges in computational biology.
ACCESS KB Guide - DELTA
0
NCSA is the home of Delta, a computing and data resource that balances cutting-edge graphics processor and CPU architectures with a non-POSIX file system with a POSIX-like interface. Delta allows applications to reap the benefits of modern file systems without rewriting code.
RMACC Systems Administrator Workshop Slides
0
A compilation of the slides from this year's RMACC Sys Admin Workshop.
RMACC Sys Admin Workhop Schedule:
Tuesday
12:00 PM Sign-in
1:00 PM Introductions
1:30 PM Lightning Talk - HPC Survival guide
2:00 PM Node Management - Scott Serr
2:30 PM Lightning Talk - Warewulf
3:00 PM Urgent HPC - Coltran Hophan-Nichols and Alexander Salois
Wednesday
9:00 AM Breakfast
10:00 AM Round table Sites - BYU, INL, UMT, ASU, MSU
11:00 AM Open OnDemand setup - Dean Anderson
11:30 AM Lightning talk - Long term hardware support
12:00 PM Lunch
1:00 PM HPC Security - Matt Bidwell
2:00 PM Lightning talk- Security
2:30 PM ACCESS resources - Couso
3:00 PM Easybuild tutorial - Alexander Salois
3:30 PM General Q & A
Thursday
9:00 AM Breakfast
10:00 AM Lightning Talk- Containers and Virtual Machines
11:00 AM University of Montana - Hellgate Site Tour
11:30 AM Closing Remarks
Git Branching Workflow and Maneuvers
0
A couple of resources that:
1.) Presents and defends a git branching workflow for stable collaborative git based projects. ("A Successful Git Branching Model")
2.) Maps "What do you want to do?" to the commands necessary to accomplish it. ("Git Flight Rules")
A survey on datasets for fairness-aware machine learning
0
The research paper provides an overview of various datasets that have been used to study fairness in machine learning. It discusses the characteristics of these datasets, such as their size, diversity, and the fairness-related challenges they address. The paper also examines the different domains and applications covered by these datasets.