RMACC Systems Administrator Workshop Slides
0
A compilation of the slides from this year's RMACC Sys Admin Workshop.
RMACC Sys Admin Workhop Schedule:
Tuesday
12:00 PM Sign-in
1:00 PM Introductions
1:30 PM Lightning Talk - HPC Survival guide
2:00 PM Node Management - Scott Serr
2:30 PM Lightning Talk - Warewulf
3:00 PM Urgent HPC - Coltran Hophan-Nichols and Alexander Salois
Wednesday
9:00 AM Breakfast
10:00 AM Round table Sites - BYU, INL, UMT, ASU, MSU
11:00 AM Open OnDemand setup - Dean Anderson
11:30 AM Lightning talk - Long term hardware support
12:00 PM Lunch
1:00 PM HPC Security - Matt Bidwell
2:00 PM Lightning talk- Security
2:30 PM ACCESS resources - Couso
3:00 PM Easybuild tutorial - Alexander Salois
3:30 PM General Q & A
Thursday
9:00 AM Breakfast
10:00 AM Lightning Talk- Containers and Virtual Machines
11:00 AM University of Montana - Hellgate Site Tour
11:30 AM Closing Remarks
Slurm User Group Mailing List
0
Building Anaconda Navigator applications
0
This tutorial explains how to create an Anaconda Navigator Application (app) for JupyterLab. It is intended for users of Windows, macOS, and Linux who want to generate an Anaconda Navigator app conda package from a given recipe. Prior knowledge of conda-build or conda recipes is recommended.
MATLAB bioinformatics toolbox
0
Bioinformatics Toolbox provides algorithms and apps for Next Generation Sequencing (NGS), microarray analysis, mass spectrometry, and gene ontology. Using toolbox functions, you can read genomic and proteomic data from standard file formats such as SAM, FASTA, CEL, and CDF, as well as from online databases such as the NCBI Gene Expression Omnibus and GenBank.
Scikit-Learn: Easy Machine Learning and Modeling
0
Scikit-learn is free software machine learning library for Python. It has a variety of features you can use on data, from linear regression classifiers to xg-boost and random forests. It is very useful when you want to analyze small parts of data quickly.
Git Branching Workflow and Maneuvers
0
A couple of resources that:
1.) Presents and defends a git branching workflow for stable collaborative git based projects. ("A Successful Git Branching Model")
2.) Maps "What do you want to do?" to the commands necessary to accomplish it. ("Git Flight Rules")
Performance Engineering Of Software Systems
0
A class from MITOpenCourseware that gives a hands on approach to building scalable and high-performance software systems. Topics include performance analysis, algorithmic techniques for high performance, instruction-level optimizations, caching optimizations, parallel programming, and building scalable systems.
File management of Visual Studio Code on clusters
0
Visual Studio Code, commonly known as VSCode, is a popular tool used by programmers worldwide. It serves as a text editor and an Integrated Development Environment (IDE) that supports a wide variety of programming languages. One of its key features is its extensive library of extensions. These extensions add on to the basic functionalities of VSCode, making coding more efficient and convenient.
However, there's a catch. When these extensions are installed and used frequently, they generate a multitude of files. These files are typically stored in a folder named .vscode-extension within your home directory. On a cluster computing facility such as the FASTER and Grace clusters at Texas A&M University, there's a limitation on how many files you can have in your home directory. For instance, the file number limit could be 10000, while the .vscode-extension directory can hold around 4000 temporary files even with just a few extensions. Thus, if the number of files in your home directory surpasses this limit due to VSCode extensions, you might face some issues. This restriction can discourage users from taking full advantage of the extensive features and extensions offered by the VSCode editor.
To overcome this, we can shift the .vscode-extension directory to the scratch space. The scratch space is another area in the cluster where you can store files and it usually has a much higher limit on the number of files compared to the home directory. We can perform this shift smoothly using a feature called symbolic links (or symlinks for short). Think of a symlink as a shortcut or a reference that points to another file or directory located somewhere else.
Here's a step-by-step guide on how to move the .vscode-extension directory to the scratch space and create a symbolic link to it in your home directory:
1. Copy the .vscode-extension directory to the scratch space: Using the cp command, you can copy the .vscode-extension directory (along with all its contents) to the scratch space. Here's how:
cp -r ~/.vscode-extension /scratch/user
Don't forget to replace /scratch/user with the actual path to your scratch directory.
2. Remove the original .vscode-extension directory: Once you've confirmed that the directory has been copied successfully to the scratch space, you can remove the original directory from your home space. You can do this using the rm command:
rm -r ~/.vscode-extension
It's important to make sure that the directory has been copied to the scratch space successfully before deleting the original.
3. Create a symbolic link in the home directory: Lastly, you'll create a symbolic link in your home directory that points to the .vscode-extension directory in the scratch space. You can do this as follows:
ln -s /scratch/user/.vscode-extension ~/.vscode-extension
By following this process, all the files generated by VSCode extensions will be stored in the scratch space. This prevents your home directory from exceeding its file limit. Now, when you access ~/.vscode-extension, the system will automatically redirect you to the directory in the scratch space, thanks to the symlink. This method ensures that you can use VSCode and its various extensions without worrying about hitting the file limit in your home directory.
OpenHPC: Beyond the Install Guide
0
Materials for the "OpenHPC: Beyond the Install Guide" half-day tutorial, first offered at PEARC24. The goal of this repository is to let instructors or self-learners to construct one or more OpenHPC 3.x virtual environments, for those environments to be as close as possible to the defaults from the OpenHPC installation guide, and to then use those environments to demonstrate several topics beyond the basic installation guide.
Topics include:
1. Building a login node that's practically identical to a compute node (except for where it needs to be different)
2. Adding more security to the SMS and login node
3. Using node-local storage for the OS and/or scratch
4. De-coupling the SMS and the compute nodes (e.g., independent kernel versions)
5. GPU driver installation (simulated/recorded, not live)
6. Easier management of node differences (GPU or not, diskless/single-disk/multi-disk, Infiniband or not, etc.)
7. Slurm configuration to match some common policy goals (fair share, resource limits, etc.)
Resource to active inference
0
Active inference is an emerging study field in machine learning and computational neuroscience. This website in particular introduces "active inference institute", which has established a couple of years ago, and contains a wide variety of resources for understanding the theory of active inference and for participating a worldwide active inference community.
Regular Expressions
0
Regular expressions (sometimes referred to as RegEx) is an incredibly powerful tool that is used to define string patterns for "find" or "find and replace" operations on strings, or for input validation. Regular Expressions are used in search engines, in search and replace dialogs of word processors and text editors, and text-processing Linux utilities such as sed and awk. They are supported in many programming languages, including Python, R, Perl, Java, and others.
PyTorch Introduction
0
This is a very barebones introduction to the PyTorch framework used to implement machine learning. This tutorial implements a feed-forward neural network and is taught completely asynchronously through Stanford University. A good start after learning the theory behind feed-forward neural networks.
Open Storage Network
0
The Open Storage Network, a national resource available through the XSEDE resource allocation system, is high quality, sustainable, distributed storage cloud for the research community.
Jetstream Home
0
Jetstream2 makes cutting-edge high-performance computing and software easy to use for your research regardless of your project’s scale—even if you have limited experience with supercomputing systems.Cloud-based and on-demand, the 24/7 system includes discipline-specific apps. You can even create virtual machines that look and feel like your lab workstation or home machine, with thousands of times the computing power.
Factor Graphs and the Sum-Product Algorithm
0
A tutorial paper that presents a generic message-passing algorithm, the sum-product algorithm, that operates in a factor graph. Following a single, simple computational rule, the sum-product algorithm computes either exactly or approximately various marginal functions derived from the global function. A wide variety of algorithms developed in artificial intelligence, signal processing, and digital communications can be derived as specific instances of the sum-product algorithm, including the forward/backward algorithm, the Viterbi algorithm, the iterative "turbo" decoding algorithm, Pearl's (1988) belief propagation algorithm for Bayesian networks, the Kalman filter, and certain fast Fourier transform (FFT) algorithms
Geocomputation with R (Free Reference Book)
0
Below is a link for a book that focuses on how to use "sf" and "terra" packages for GIS computations. As of 5/1/2023, this book is up to date and examples are error free. The book has a lot of information but provides a good overview and example workflows on how to use these tools.
Expanse Home Page
0
Expanse at SDSC is a cluster designed by Dell and SDSC delivering 5.16 peak petaflops, and offers Composable Systems and Cloud Bursting.
Paraview UArizona HPC links (advanced)
0
These links take you to visualization resources supported by the University of Arizona's HPC visualization consultant ([rtdatavis.github.io](http://rtdatavis.github.io/)). The following links are specific to the Paraview program and the workflows that have been used my researchers at the U of Arizona. These links are distinct from the others posted in the beginner paraview access ci links from the University of Arizona in that they are for more complex workflows. The links included explain how to use the terminal with paraview (pvpython), and the steps to leverage HPC resources for headless batch rendering. The batch rendering tutorial is significantly more complex than the others so if you find yourself stuck please post on the https://ask.cyberinfrastructure.org/ and I will try to troubleshoot with you.
Master's in Data Science Program Guide - TechGuide
0
A master’s degree in data science helps prepare professionals to take the next career step. This article will focus primarily on data science, a graduate degree in this field, and a data scientist or data analyst career. With many employers preferring a master’s degree in data science for those seeking to fill roles as data scientists or analysts, we will discuss the data science master’s degree in detail.
Machine Learning in R online book
0
The free online book for the mlr3 machine learning framework for R. Gives a comprehensive overview of the package and ecosystem, suitable from beginners to experts. You'll learn how to build and evaluate machine learning models, build complex machine learning pipelines, tune their performance automatically, and explain how machine learning models arrive at their predictions.
Understanding LLM Fine-tuning
0
With the recent uprising of LLM's many business are looking at way to adopt these LLMs and fine-tuning these models on specfic data sets to ensure accuracy. These models when fine-tuned can be optimal for fulfilling the specific needs of a company. This site explains explicitly when, how, and why models should be trained. It goes over various strategies for LLM fine -tuning.
Developer Stories Podcast
0
As developers, we get excited to think about challenging problems. When you ask us what we are working on, our eyes light up like children in a candy store. So why is it that so many of our developer and software origin stories are not told? How did we get to where we are today, and what did we learn along the way? This podcast aims to look “Behind the Scenes of Tech’s Passion Projects and People.” We want to know your developer story, what you have built, and why. We are an inclusive community - whatever kind of institution or country you hail from, if you are passionate about software and technology you are welcome!
Official Documentation of VisIt
0
VisIt is a prominent open-source, interactive parallel visualization and graphical analysis tool predominantly used for viewing scientific data. Its GitHub repository offers a detailed insight into the software's source code, documentation, and contribution guidelines. In particular, it offers useful examples on how it
HPCwire
0
HPCwire is a prominent news and information source for the HPC community. Their website offers articles, analysis, and reports on HPC technologies, applications, and industry trends.
Introduction to Parallel Programming for GPUs with CUDA
0
This tutorial provides a comprehensive introduction to CUDA programming, focusing on essential concepts such as CUDA thread hierarchy, data parallel programming, host-device heterogeneous programming model, CUDA kernel syntax, GPU memory hierarchy, and memory optimization techniques like global memory coalescing and shared memory bank conflicts. Aimed at researchers, students, and practitioners, the tutorial equips participants with the skills needed to leverage GPU acceleration for scalable computation, particularly in the context of AI.