Introduction to MP
0
Open Multi-Processing, is an API designed to simplify the integration of parallelism in software development, particularly for applications running on multi-core processors and shared-memory systems. It is an important resource as it goes over what openMP and ways to work with it. It is especially important because it provides a straightforward way to express parallelism in code through pragma directives, making it easier to create parallel regions, parallelize loops, and define critical sections. The key benefit of OpenMP lies in its ease of use, automatic thread management, and portability across various compilers and platforms. For app development, especially in the context of mobile or desktop applications, OpenMP can enhance performance by leveraging the capabilities of modern multi-core processors. By parallelizing computationally intensive tasks, such as image processing, data analysis, or simulations, apps can run faster and more efficiently, providing a smoother user experience and taking full advantage of the available hardware resources. OpenMP's scalability allows apps to adapt to different hardware configurations, making it a valuable tool for developers aiming to optimize their software for a range of devices and platforms.
The Use of High-Performance Computing Services in University Settings: A Usability Case Study of the University of Cincinnati’s High-Performance Computing Cluster
0
This presentation gives a detailed breakdown of the outcome of my master's thesis which was focused on making HPC Clusters accessible across all disciplines in a university setting "Our Case Study was the university of Cincinnati".
Slurm User Group Mailing List
0
Representation Learning in Deep Learning
0
Representation learning is a fundamental concept in machine learning and artificial intelligence, particularly in the field of deep learning. At its core, representation learning involves the process of transforming raw data into a form that is more suitable for a specific task or learning objective. This transformation aims to extract meaningful and informative features or representations from the data, which can then be used for various tasks like classification, clustering, regression, and more.
Beautiful Soup - Simple Python Web Scraping
0
This package lets you easily scrape websites and extract information based on html tags and various other metadata found in the page. It can be useful for large-scale web analysis and other tasks requiring automated data gathering.
How to Build a Great Relationship with a Mentor
0
Emphasizes benefits of being mentored. Describes how to identify and choose a mentor. Suggests a path forward. Not mentor or two-way focused.
Examples of Thrust code for GPU Parallelization
0
Some examples for writing Thrust code. To compile, download the CUDA compiler from NVIDIA. This code was tested with CUDA 9.2 but is likely compatible with other versions. Before compiling change extension from thrust_ex.txt to thrust_ex.cu. Any code on the device (GPU) that is run through a Thrust transform is automatically parallelized on the GPU. Host (CPU) code will not be. Thrust code can also be compiled to run on a CPU for practice.
Jetstream2 Status
0
Jetstream2 makes cutting-edge high-performance computing and software easy to use for your research regardless of your project’s scale—even if you have limited experience with supercomputing systems.Cloud-based and on-demand, the 24/7 system includes discipline-specific apps. You can even create virtual machines that look and feel like your lab workstation or home machine, with thousands of times the computing power.
AHPCC documentary
0
This link is a documentary website to use AHPCC.
PyTorch Introduction
0
This is a very barebones introduction to the PyTorch framework used to implement machine learning. This tutorial implements a feed-forward neural network and is taught completely asynchronously through Stanford University. A good start after learning the theory behind feed-forward neural networks.
Building Anaconda Navigator applications
0
This tutorial explains how to create an Anaconda Navigator Application (app) for JupyterLab. It is intended for users of Windows, macOS, and Linux who want to generate an Anaconda Navigator app conda package from a given recipe. Prior knowledge of conda-build or conda recipes is recommended.
PetIGA, an open-source code for isogeometric analysis
0
This documentation provides an overview of the PetIGA framework, an open source code for solving multiphysics problems with isogeometric analysis. The documentation covers some simple tutorials and examples to help users get started with the framework and apply it to solve real-world problems in continuum mechanics, including solid and fluid mechanics.
Active inference textbook
0
This textbook is the first comprehensive treatment of active inference, an integrative perspective on brain, cognition, and behavior used across multiple disciplines including computational neurosciences, machine learning, artificial intelligence, and robotics. It was published in 2022 and it's open access at this time. The contents in this textbook should be educational to those who want to understand how the free energy principle is applied to the normative behavior of living organisms and who want to widen their knowledge of sequential decision making under uncertainty.
What is VPN? How It Works, Types of VPN
0
A VPN, or Virtual Private Network, is a technology that creates a secure tunnel between your device and a VPN server. This tunnel encrypts all of your traffic, making it unreadable to anyone who tries to intercept it.
Conda
0
Conda is a popular package management system. This tutorial introduces you to Conda and walks you through managing Python, your environment, and packages.
Why Mentoring Matters and How to Get Started
0
Describes effective mentorship (both ways).
Regulated Research Community of Practice
0
The daily news clearly shows the increasing threat to safety and privacy of data, personal as well as intellectual property. While the requirements such as DFARS 7012, HIPAA, and Cybersecurity Maturity Model Certification (CMMC) improve the consistency of data handling between agencies and contractors and grantees, it leaves academic institutions to figure out how to meet such requirements in a cost-effective way that fits the research and education mission of the institution. Most institutions, agencies, and companies act in isolation with one-off contract language to address data security and safeguarding concerns. Even though cybersecurity has a clear and uniform goal of protecting data, a onesize solution does not fit all academic institutions.
By supporting this community with development of a community strategic roadmap, regular discussions and workshops, and a repository of generalized and specific resources for handling regulated research programs RRCoP lowers the barrier to entry for institutions handling new regulations.
Fairness and Machine Learning
0
The "Fairness and Machine Learning" book offers a rigorous exploration of fairness in ML and is suitable for researchers, practitioners, and anyone interested in understanding the complexities and implications of fairness in machine learning.
The Official Documentation of Pandas
0
Pandas is one of the most essential Python libraries for data analysis and manipulation. It provides high-performance, easy-to-use data structures, and data analysis tools for the Python programming language. The official documentation serves as an in-depth guide to using this powerful tool including explanations and examples.
Geocomputation with R (Free Reference Book)
0
Below is a link for a book that focuses on how to use "sf" and "terra" packages for GIS computations. As of 5/1/2023, this book is up to date and examples are error free. The book has a lot of information but provides a good overview and example workflows on how to use these tools.
Optimizing Research Workflows - A Documentation of Snakemake
0
Snakemake is a powerful and versatile workflow management system that simplifies the creation, execution, and management of data analysis pipelines. It uses a user-friendly, Python-based language to define workflows, making it particularly valuable for automating and reproducibly managing complex computational tasks in research and data analysis.
Neocortex Documentation
0
Neocortex is a new supercomputing cluster at the Pittsburgh Supercomputing Center (PSC) that features groundbreaking AI hardware from Cerebras Systems.
Expanse Home Page
0
Expanse at SDSC is a cluster designed by Dell and SDSC delivering 5.16 peak petaflops, and offers Composable Systems and Cloud Bursting.
Applications of Machine Learning in Engineering and Parameter Tuning Tutorial
0
Slides for a tutorial on Machine Learning applications in Engineering and parameter tuning given at the RMACC conference 2019.