Warewulf documentation
0
Warewulf is an operating system provisioning platform for Linux that is designed to produce secure, scalable, turnkey cluster deployments that maintain flexibility and simplicity. It can be used to setup a stateless provisioning in HPC environment.
Big Data Research at the University of Colorado Boulder
0
Background: Big data, defined as having high volume, complexity or velocity, have the potential to greatly accelerate research discovery. Such data can be challenging to work with and require research support and training to address technical and ethical challenges surrounding big data collection, analysis, and publication.
Methods: The present study was conducted via a series of semi-structured interviews to assess big data methodologies employed by CU Boulder researchers across a broad sample of disciplines, with the goal of illuminating how they conduct their research; identifying challenges and needs; and providing recommendations for addressing them.
Findings: Key results and conclusions from the study indicate: gaps in awareness of existing big data services provided by CU Boulder; open questions surrounding big data ethics, security and privacy issues; a need for clarity on how to attribute credit for big data research; and a preference for a variety of training options to support big data research.
MOPAC
0
MOPAC (Molecular Orbital PACkage) is a semi-empirical quantum chemistry package used to compute molecular properties and structures by using approximations of the Schrödinger equation. This tutorial explains the process of using MOPAC for different forms of calculations.
Python Tools for Data Science
0
Python has become a very popular programming language and software ecosystem for work in Data Science, integrating support for data access, data processing, modeling, machine learning, and visualization. In this webinar, we will describe some of the key Python packages that have been developed to support that work, and highlight some of their capabilities. This webinar will also serve as an introduction and overview of topics addressed in two Cornell Virtual Workshop tutorials, available at https://cvw.cac.cornell.edu/pydatasci1 and https://cvw.cac.cornell.edu/pydatasci2
Data Visualization Tools for Julia
0
Plots.jl is the most widely used plotting library for the Julia programming language. It's known for being especially powerful in its versatility and intuitiveness. It's limited set of dependencies and wide applicability across different graphics packages make it especially helpful in visualizing the results of your latest Julia implementation.
However, there are still multiple options available for Julia programmers to visualize their datasets. The second link details a comparison against a variety of Julia packages.
Solving differential equations with Physics-informed Neural Network
0
Differential equations, the backbone of countless physical phenomena, have traditionally been solved using numerical methods or analytical techniques. However, the advent of deep learning introduces an intriguing alternative: Physics-Informed Neural Networks (PINNs). By leveraging the representational power of neural networks and integrating physical laws (like differential equations), PINNs offer a novel approach to solving complex problems. This guide walks through an implementation of a PINN to solve DEs such as the logistic equation.
Header-only C++ JSON library
0
JSON is a lightweight format for storing and transporting data, for example in a config file. This library is header-only, and has easy-to-read documentation. It is a C++ library.
Developer Stories Podcast
0
As developers, we get excited to think about challenging problems. When you ask us what we are working on, our eyes light up like children in a candy store. So why is it that so many of our developer and software origin stories are not told? How did we get to where we are today, and what did we learn along the way? This podcast aims to look “Behind the Scenes of Tech’s Passion Projects and People.” We want to know your developer story, what you have built, and why. We are an inclusive community - whatever kind of institution or country you hail from, if you are passionate about software and technology you are welcome!
Higher Ed Controlled Unclassified Information Slack (HigherEdCUI)
0
Slack channel for the Higher Ed CUI community
Bioinformatics Workflow Management with Nextflow
0
Nextflow is an open-source, domain-specific language and workflow manager designed for the execution and coordination of scientific and data-intensive computational workflows. It was specifically created to address the challenges faced by researchers and scientists when dealing with complex and scalable computational pipelines, particularly in fields such as bioinformatics, genomics, and data analysis.
Here provided some links to start with.
Setting up PyFR flow solver on clusters
0
These instructions were executed on the FASTER and Grace cluster computing facilities at Texas A&M University. However, the process can be applied to other clusters with similar environments. For local installation, please refer to the PyFR documentation.
Please note that these instructions were valid at the time of writing. Depending on the time you're executing these, the versions of the modules may need to be updated.
1. Loading Modules
The first step involves loading pre-installed software libraries required for PyFR. Execute the following commands in your terminal to load these modules:
module load foss/2022b
module load libffi/3.4.4
module load OpenSSL/1.1.1k
module load METIS/5.1.0
module load HDF5/1.13.1
2. Python Installation from Source
Choose a location for Python 3.11.1 installation, preferably in a .local directory. Navigate to the directory containing the Python 3.11.1 source code. Then configure and install Python:
cd $INSTALL/Python-3.11.1/
./configure --prefix=$LOCAL --enable-shared --with-system-ffi --with-openssl=/sw/eb/sw/OpenSSL/1.1.1k-GCCcore-11.2.0/ PKG_CONFIG_PATH=$LOCAL/pkgconfig LDFLAGS=/usr/lib64/libffi.so.6.0.2
make clean; make -j20; make install;
3. Virtual Environment Setup
A virtual environment allows you to isolate Python packages for this project from others on your system. Create and activate a virtual environment using:
pip3.11 install virtualenv
python3.11 -m venv pyfr-venv
. pyfr-venv/bin/activate
4. Install PyFR Dependencies
Several Python packages are required for PyFR. Install these packages using the following commands:
pip3 install --upgrade pip
pip3 install --no-cache-dir wheel
pip3 install --no-cache-dir botorch pandas matplotlib pyfr
pip3 uninstall -y pyfr
5. Install PyFR from Source
Finally, navigate to the directory containing the PyFR source code, and then install PyFR:
cd /scratch/user/sambit98/github/PyFR/
python3 setup.py develop
Congratulations! You've successfully set up PyFR on the FASTER and Grace cluster computing facilities. You should now be able to use PyFR for your computational fluid dynamics simulations.
Master's in Data Science Program Guide - TechGuide
0
A master’s degree in data science helps prepare professionals to take the next career step. This article will focus primarily on data science, a graduate degree in this field, and a data scientist or data analyst career. With many employers preferring a master’s degree in data science for those seeking to fill roles as data scientists or analysts, we will discuss the data science master’s degree in detail.
ACCESS Guide (originally given at Duke OIT)
0
A guide for Duke OIT on how to advise users on using ACCESS and allocation credits to jetstream 2 for Duke University members. This can be used for non Duke members. Assumes the reader has basic knowledge of ACCESS.
Geocomputation with R (Free Reference Book)
0
Below is a link for a book that focuses on how to use "sf" and "terra" packages for GIS computations. As of 5/1/2023, this book is up to date and examples are error free. The book has a lot of information but provides a good overview and example workflows on how to use these tools.
ACCESS Video Learning Center
0
A library of short videos about ACCESS allocations, resources and support.
OnShape FeatureScripts: Custom features for everyone
0
OnShape FeatureScripts allow users to create their own features via OnShape's programming language. The user can make these as simple or complex as they need, and they can save tons of time for heavy OnShape users or complex projects!
ACCESS Campus Champion Example Allocation
0
ACCESS requests proposals to be written following NSF proposal guidelines. The link provides an example of an ACCESS proposal using an NSF LaTeX template. The request is at the DISCOVER level appropriate for Campus Champions. The file is 2 pages: the first page details the motivation, approach, and resources requested; and the second page is a 1-page bio.
Feed Forward NNs and Gradient Descent
0
Feed-forward neural networks are a simple type of network that simply rely on data to be "fed-forward" through a series of layers that makes decisions on how to categorize datum. Gradient descent is a type of optimization tool that is often used to train machines. These two areas in ML are good starting points and are the easiest types of neural network/optimization to understand.
Tutorial for OpenMP Building up and Utilization
0
The following link elaborates the usage of OpenMP API and its related syntax. There are also several exercises available for learners to help them get familiar with this widely-used tool for multi-threaded realization.
Cyber Security
0
learning cybersecurity is crucial for personal protection, safeguarding digital assets, financial security, and national security. It is important when it comes to consumer data protection for business, creating long lasting relationships with customers.
NCSA HPC-Moodle
0
Self-paced tutorials on high-end computing topics such as parallel computing, multi-core performance, and performance tools. Some of the tutorials also offer digital badges.
Factor Graphs and the Sum-Product Algorithm
0
A tutorial paper that presents a generic message-passing algorithm, the sum-product algorithm, that operates in a factor graph. Following a single, simple computational rule, the sum-product algorithm computes either exactly or approximately various marginal functions derived from the global function. A wide variety of algorithms developed in artificial intelligence, signal processing, and digital communications can be derived as specific instances of the sum-product algorithm, including the forward/backward algorithm, the Viterbi algorithm, the iterative "turbo" decoding algorithm, Pearl's (1988) belief propagation algorithm for Bayesian networks, the Kalman filter, and certain fast Fourier transform (FFT) algorithms
FSL Lectures
0
This is the official University of Oxford FSL group lecture page. This includes information on upcoming and past courses (online and in-person), as well as lecture materials. Available lecture materials includes slides and recordings on using FSL, MR physics, and applications of imaging data.
National Public Radio (NPR)
0
Pluses and challenges of mentor selection. Offers tips for acquiring a mentor (finding, asking). And how to be a good mentee. SMART framework mentioned. Discrimination mentioned. Difference between mentor and sponsor underlined. More than one mentor encouraged. Good tips.
OpenStack Tutorial For Beginners
0
OpenStack Tutorial For Beginners