PyTorch Introduction
0
This is a very barebones introduction to the PyTorch framework used to implement machine learning. This tutorial implements a feed-forward neural network and is taught completely asynchronously through Stanford University. A good start after learning the theory behind feed-forward neural networks.
Hour of Ci
0
Hour of Cyberinfrastructure (Hour of CI) is a nationwide campaign to introduce undergraduate and graduate students to cyberinfrastructure and geographic information science (GIS).
Practical Machine Learning with Python
0
This video series provides a holistic understanding of machine learning, covering theory, application, and inner workings of supervised, unsupervised, and deep learning algorithms. It covers topics such as linear regression, K Nearest Neighbors, Support Vector Machines (SVM), flat clustering, hierarchical clustering, and neural networks. Goes over the high level intuitions of the algorithms and how they are logically meant to work. Apply the algorithms in code using real world data sets along with a module, such as with Scikit-Learn.
How-To Video: ACCESS Allocations
0
This video will walk you through the process of efficiently utilizing and managing your ACCESS project(s). Here, you’ll find instructions on how to request resources, extend the end date of a project, renew a request, and all the other necessary tasks to successfully manage your project.
OpenMP and Multithreaded Jobs in GRASS
0
Techniques and support for multithreaded geospatial data processing in GRASS.
Containerization Explained
0
Containerization is a software development method in which applications are packaged into standard units for development, shipment, and deployment.
Training an LSTM Model in Pytorch
0
This google colab notebook tutorial demonstrates how to create and train an lstm model in pytorch to be used to predict time series data. An airline passenger dataset is used as an example.
Harnessing the Power of Cloud and Machine Learning for Climate and Ocean Advances
0
- Harnessing the Power of Cloud and Machine Learning for Climate and Ocean Advances
- Github for Outputs of Presentation
Documentation and presentation on how to use machine learning and deep learning framework using TensorFlow, Keras and sci-kit learn for Climate and Ocean Advances
Ultimate guide to Unix
0
Unix is incredibly common and useful. This website provides all the common commands and explanations for one to get started with a unix system.
Open Storage Network
0
The Open Storage Network, a national resource available through the XSEDE resource allocation system, is high quality, sustainable, distributed storage cloud for the research community.
Implementing Markov Processes with Julia
0
The following link provides an easy method of implementing Markov Decision Processes (MDP) in the Julia computing language. MDPs are a class of algorithms designed to handle stochastic situations where the actor has some level of control. For example, used at a low level, MDPs can be used to control an inverted pendulum, but applied in higher level decision making the can also decide when to take evasive action in air traffic management. MDPs can also be extended to the partially observable domain to form the Partially Observable Markov Decision Process (POMDP). This link contains a wealth of information to show one can easily implement basic POMDP and MDP algorithms and apply well known online and offline solvers.
Reinforcement Learning For Beginners with Python
0
This course takes through the fundamentals required to get started with reinforcement learning with Python, OpenAI Gym and Stable Baselines. You'll be able to build deep learning powered agents to solve a varying number of RL problems including CartPole, Breakout and CarRacing as well as learning how to build your very own/custom environment!
MATLAB with other Programming Languages
0
MATLAB is a really useful tool for data analysis among other computational work. This tutorial takes you through using MATLAB with other programming languages including C, C++, Fortran, Java, and Python.
iOS CoreML + SwiftUI Image Classification Model
0
This tutorial will teach step-by-step how to create an image classification model using Core ML in XCode and integrate it into an iOS app that will use the user's iPhone camera to scan objects and predict based on the image classification model.
Working with Python on HPC Clusters
0
This tutorial series and documentation covers topics on using Python on HPC clusters. The specific steps are based on the HOPPER cluster at George Mason University in Fairfax, VA. They should be implementable on most HPC clusters that have the SLURM scheduler installed, the Environment Modules system for managing packages and Open onDemand for a web-based GUI to access the cluster resources.
Neurostars
0
A question and answer forum for neuroscience researchers, infrastructure providers and software developers.
TensorFlow for Deep Neural Networks
0
TensorFlow is a powerful framework for Deep Learning, developed by google. This specifically is their python package, which is easy to use and can be used to train incredibly powerful models.
Introduction to Linux CLI for Researchers
0
The goal of this video is to help researchers and students recently given allocations to High Performance Compute resources a basic introduction to Linux commands to help them get started. These are a few of the most fundamental commands for navigating and getting started.
If you find this video helpful or would like me to continue this series let me know!
How to use Rclone
0
Learn how to use Rclone to transfer data, specifically from your local drive to the Open Storage Network, vice versa.
Introduction to Parallel Computing Tutorial
0
The tutorial is intended to provide a brief overview of the extensive and broad topic of Parallel Computing. It covers the basics of parallel computing, and is intended for someone who is just becoming acquainted with the subject .
Samtools Documentation
0
Samtools is a suite of programs for interacting with high-throughput sequencing data, especially in the SAM/BAM format. It offers various utilities for processing, analyzing, and managing sequence data generated from next-generation sequencing (NGS) experiments. Samtools is widely used in bioinformatics and genomics research for tasks such as read alignment, variant calling, and data manipulation.
Charliecloud User Group
0
Announcements for for users and developers of Charliecloud, which provides lightweight user-defined software stacks for high-performance computing.
Quick and Robust Data Augmentation with Albumentations Library
0
Data augmentation is a crucial step in the pipeline for image classification with deep learning. Albumentations is an extremely versatile Python library that can be used to easily augment images. Transformations include rotations, flips, downscaling, distortions, blurs, and many more.
Citation:
Buslaev A, Iglovikov VI, Khvedchenya E, Parinov A, Druzhinin M, Kalinin AA. Albumentations: Fast and Flexible Image Augmentations. Information. 2020; 11(2):125. https://doi.org/10.3390/info11020125
Data Imputation Methods for Climate Data and Mortality Data
0
- Data Imputation Methods for Climate Data and Mortality Data - Slices
- Github repository
- Data Imputation Methods for Climate Data and Mortality Data - Full Tutorial
This slices and videos introduced how to use K-Nearest-Neighbors method to impute climate data and how to use Bayesian Spatio-Temporal models in R-INLA to impute mortality data. The demos will be added soon.
phenoACCESS-24 workshop program materials
0
phenoACCESS-24: Workshop on Research Computing and Plant Phenotyping
High-throughput plant phenotyping is computationally intensive, requiring data storage, data processing and analysis, research computing expertise, and mechanisms for data sharing. This workshop is aimed at research computing workforce development by addressing questions such as what is plant phenotyping; what types of data are collected; what are the preprocessing and analytical needs; what tools and platforms exist for data capture, management, analysis, and storage; and how best to collaborate and engage with phenotyping researchers. The full-day agenda will include speakers (scientists and research compute staff); panel discussions (how to work with research computing staff and facilities; how to engage with phenotyping scientists), and networking opportunities (meet-and-greet, ice breakers, small group discussions). The videos and slide decks for the talks are included on the linked page.