Docker - Containerized, reproducible workflows
0
Docker allows for containerization of any task - basically a smaller, scalable version of a virtual machine. This is very useful when transferring work across computing environments, as it ensures reproducibility.
Linux Tutorial from Ryan's Tutorials
0
The following pages are intended to give you a solid foundation in how to use the terminal, to get the computer to do useful work for you. You won't be a Unix guru at the end but you will be well on your way and armed with the right knowledge and skills to get you there if that's what you want (which you should because that will make you even more awesome). Here you will learn the Linux command line (Bash) with our 13 part beginners tutorial. It contains clear descriptions, command outlines, examples, shortcuts and best practice. At first, the Linux command line may seem daunting, complex and scary. It is actually quite simple and intuitive (once you understand what is going on that is), and once you work through the following sections you will understand what is going on. Unix likes to take the approach of giving you a set of building blocks and then letting you put them together. This allows us to build things to suit our needs. With a bit of creativity and logical thinking, mixed in with an appreciation of how the blocks work, we can assemble tools to do virtually anything we want. The aim is to be lazy. Why should we do anything we can get the computer to do for us? The only reason I can think of is that you don't know how (but after working through these pages you will know how, so then there won't be a good reason). A question that may have crossed your mind is "Why should I bother learning the command line? The Graphical User Interface is much easier and I can already do most of what I need there." To a certain extent you would be right, and by no means am I suggesting you should ditch the GUI. Some tasks are best suited to a GUI, word processing and video editing are great examples. At the same time, some tasks are more suited to the command line, data manipulation (reporting) and file management are some good examples. Some tasks will be just as easy in either environment. Think of the command line as another tool you can add to your belt. As always, pick the best tool for the job.
NITRC
0
The Neuroimaging Tools and Resources Collaboratory (NITRC) is a neuroimaging informatics knowledge environment for MR, PET/SPECT, CT, EEG/MEG, optical imaging, clinical neuroinformatics, imaging genomics, and computational neuroscience tools and resources.
Scipy Lecture Notes
0
Comprehensive tutorials and lecture notes covering various aspects of scientific computing using Python and Scipy.
Machine Learning in R online book
0
The free online book for the mlr3 machine learning framework for R. Gives a comprehensive overview of the package and ecosystem, suitable from beginners to experts. You'll learn how to build and evaluate machine learning models, build complex machine learning pipelines, tune their performance automatically, and explain how machine learning models arrive at their predictions.
EasyBuild Documentation
0
EasyBuild is a software installation framework that allows administrators to easily build and install software on high-performance computing (HPC) systems. It supports a wide range of software packages, toolchains, and compilers.
Supported software are found in the EasyConfigs repository, one of several resositories in EasyBuild project.
Mechanism and Implementation of Various MPI Libraries
0
- Tutorial for MPI Working Mechanism and Detailed Implementation
- A Simple Running Case of Open MPI on clusters
There is a detailed explanation about communication routines and managing methods of different MPI libraries, as well as several exercises designed for users to get familiar with the implementation of MPI build process.
Representation Learning in Deep Learning
0
Representation learning is a fundamental concept in machine learning and artificial intelligence, particularly in the field of deep learning. At its core, representation learning involves the process of transforming raw data into a form that is more suitable for a specific task or learning objective. This transformation aims to extract meaningful and informative features or representations from the data, which can then be used for various tasks like classification, clustering, regression, and more.
Git Branching Workflow and Maneuvers
0
A couple of resources that:
1.) Presents and defends a git branching workflow for stable collaborative git based projects. ("A Successful Git Branching Model")
2.) Maps "What do you want to do?" to the commands necessary to accomplish it. ("Git Flight Rules")
Open-Source Server Virtualization Platform
0
Proxmox Virtual Environment is a hyper-converged infrastructure open-source software. It is a hosted hypervisor that can run operating systems including Linux and Windows on x64 hardware.
Header-only C++ JSON library
0
JSON is a lightweight format for storing and transporting data, for example in a config file. This library is header-only, and has easy-to-read documentation. It is a C++ library.
Official Python Documentation
0
The official documentation for Python 3.11.5. Python comes with a lot of features built into the language, so it is worth taking a look as you code.
Cybersecurity Guide
0
Cybersecurity Guide is a comprehensive resource for students and early career professionals that provides users with a wide range of resources and up-to-date information on cybersecurity, including cybersecurity degree programs and bootcamps, career guides, as well as online courses and training opportunities. Additionally, it covers trends, best practices, and much more.
NERSC Training and Tutorials
0
- NERSC Training and Tutorials Main Site
- NERSC Upcoming and Recent Training Events
- NERSC Archived Training and Tutorials
A comprehensive collection of NERSC developed training and tutorial events, offered on regular schedules. All sessions are archived, including slide decks, video recordings, and software examples as are available. Some examples of past training and tutorial topics are listed below
Deep Learning for Sciences Webinar Series
BerkeleyGW Tutorial Workshop
VASP Trainings
Timemory Software Monitoring Tutorial, April 2021
HPCToolkit to Measure and Analyzing GPU Applications Performance Tutorial
Totalview Tutorial
NVidia HPCSDK - OpenMP Target Offload Training
Parallelware Training Series
ARM Debugging and Profiling Tools Tutorial
Roofline on NVIDIA GPUs
GPUs for Science events
3-part OpenACC Training Series
9-part CUDA Training Series
Understanding LLM Fine-tuning
0
With the recent uprising of LLM's many business are looking at way to adopt these LLMs and fine-tuning these models on specfic data sets to ensure accuracy. These models when fine-tuned can be optimal for fulfilling the specific needs of a company. This site explains explicitly when, how, and why models should be trained. It goes over various strategies for LLM fine -tuning.
Anvil Home Page
0
Purdue University is the home of Anvil, a powerful supercomputer that provides advanced computing capabilities to support a wide range of computational and data-intensive research spanning from traditional high-performance computing to modern artificial intelligence applications.
Python Tools for Data Science
0
Python has become a very popular programming language and software ecosystem for work in Data Science, integrating support for data access, data processing, modeling, machine learning, and visualization. In this webinar, we will describe some of the key Python packages that have been developed to support that work, and highlight some of their capabilities. This webinar will also serve as an introduction and overview of topics addressed in two Cornell Virtual Workshop tutorials, available at https://cvw.cac.cornell.edu/pydatasci1 and https://cvw.cac.cornell.edu/pydatasci2
AI for improved HPC research - Cursor and Termius - Powerpoint
0
These slides provide an introduction on how Termius and Cursor, two new and freemium apps that use AI to perform more efficient work, can be used for faster HPC research.
Intro to Machine Learning on HPC
0
This tutorial introduces machine learning on high performance computing (HPC) clusters. While it focuses on the HPC clusters at The University of Arizona, the content is generic enough that it can be used by students from other institutions.
Rockfish at Johns Hopkins University
0
Resources and User Guide available at Rockfish
Performance Engineering Of Software Systems
0
A class from MITOpenCourseware that gives a hands on approach to building scalable and high-performance software systems. Topics include performance analysis, algorithmic techniques for high performance, instruction-level optimizations, caching optimizations, parallel programming, and building scalable systems.
Introduction to Python - Texas A&M
0
Python course offered by Texas A&M HPRC
HPCwire
0
HPCwire is a prominent news and information source for the HPC community. Their website offers articles, analysis, and reports on HPC technologies, applications, and industry trends.
Machine Learning in Astrophysics
0
Machine learning is becoming increasingly important in field with large data such as astrophysics. AstroML is a Python module for machine learning and data mining built on numpy, scipy, scikit-learn, matplotlib, and astropy allowing for a range of statistical and machine learning routines to analyze astronomical data in Python. In particular, it has loaders for many open astronomical datasets with examples on how to visualize such complicated and large datasets.