Neurostars
0
A question and answer forum for neuroscience researchers, infrastructure providers and software developers.
Introduction to MP
0
Open Multi-Processing, is an API designed to simplify the integration of parallelism in software development, particularly for applications running on multi-core processors and shared-memory systems. It is an important resource as it goes over what openMP and ways to work with it. It is especially important because it provides a straightforward way to express parallelism in code through pragma directives, making it easier to create parallel regions, parallelize loops, and define critical sections. The key benefit of OpenMP lies in its ease of use, automatic thread management, and portability across various compilers and platforms. For app development, especially in the context of mobile or desktop applications, OpenMP can enhance performance by leveraging the capabilities of modern multi-core processors. By parallelizing computationally intensive tasks, such as image processing, data analysis, or simulations, apps can run faster and more efficiently, providing a smoother user experience and taking full advantage of the available hardware resources. OpenMP's scalability allows apps to adapt to different hardware configurations, making it a valuable tool for developers aiming to optimize their software for a range of devices and platforms.
How to use Rclone
0
Learn how to use Rclone to transfer data, specifically from your local drive to the Open Storage Network, vice versa.
MPI Resources
0
Workshop for beginners and intermediate students in MPI which includes helpful exercises. Open MPI documentation.
Introduction to Parallel Computing Tutorial
0
The tutorial is intended to provide a brief overview of the extensive and broad topic of Parallel Computing. It covers the basics of parallel computing, and is intended for someone who is just becoming acquainted with the subject .
Workshop on LangChain and GPT
0
This interactive workshop introduces participants to the power of GPT and LangChain for solving domain-specific scientific challenges. Participants will learn how to use these tools to address real research problems, such as predicting molecular properties or analyzing large-scale datasets in genomics. Through guided tutorials and hands-on project development, attendees will leave with a working application tailored to their own research needs.
A visual introduction to Gaussian Belief Propagation
0
This website is an interactive introduction to Gaussian Belief Propagation (GBP). A probabilistic inference algorithm that operates by passing messages between the nodes of arbitrarily structured factor graphs. A special case of loopy belief propagation, GBP updates rely only on local information and will converge independently of the message schedule. The key argument is that, given recent trends in computing hardware, GBP has the right computational properties to act as a scalable distributed probabilistic inference framework for future machine learning systems.
Docker Tutorial for Beginners
0
A Docker tutorial for beginners is a course that teaches the basics of Docker, a containerization platform that allows you to package your application and its dependencies into a standardized unit for development, shipment, and deployment.
Quick and Robust Data Augmentation with Albumentations Library
0
Data augmentation is a crucial step in the pipeline for image classification with deep learning. Albumentations is an extremely versatile Python library that can be used to easily augment images. Transformations include rotations, flips, downscaling, distortions, blurs, and many more.
Citation:
Buslaev A, Iglovikov VI, Khvedchenya E, Parinov A, Druzhinin M, Kalinin AA. Albumentations: Fast and Flexible Image Augmentations. Information. 2020; 11(2):125. https://doi.org/10.3390/info11020125
Master's in Data Science Program Guide - TechGuide
0
A master’s degree in data science helps prepare professionals to take the next career step. This article will focus primarily on data science, a graduate degree in this field, and a data scientist or data analyst career. With many employers preferring a master’s degree in data science for those seeking to fill roles as data scientists or analysts, we will discuss the data science master’s degree in detail.
Introductory Tutorial to Numpy and Pandas for Data Analysis
0
In this tutorial, I present an overview with many examples of the use of Numpy and Pandas for data analysis. Beginners in the field of data analysis can find It incredibly helpful, and at the same time, anyone who already has experience in data analysis and needs a refresher can find value in it. I discuss the use of Numpy for analyzing 1D and 2D multidimensional data and an introduction on using Pandas to manipulate CSV files.
What are LSTMs?
0
This reading will explain what a long short-term memory neural network is. LSTMs are a type of neural networks that rely on both past and present data to make decisions about future data. It relies on loops back to previous data to make such decisions. This makes LSTMs very good for predicting time-dependent behavior.
ACCESS Events and Training
0
Listing of upcoming ACCESS related events and training activities.
Metadata Systems
0
Metadata is a vital topic in libraries and librarianship, encompassing structured information used for accessing digital resources. The definition of metadata varies but is essentially data about data. It has evolved beyond simply describing metadata schemas and now focuses on topics like interoperability, non-descriptive metadata (administrative and preservation metadata), and the effective application of metadata schemas for user discovery. Interoperability, the ability to seamlessly exchange metadata between systems, is a major concern. Different levels of interoperability are examined, including schema-level, record-level, and repository-level. Challenges to interoperability include variations in standards, collaboration barriers, and costs.Metadata management is discussed in terms of the holistic management of metadata across an entire library. Steps include analyzing metadata requirements, adopting schema, creating metadata content, delivery/access, evaluation, and maintenance. Administrative metadata, which encompasses ownership and production information, is becoming more critical, particularly for electronic resource licensing. Preservation metadata is also gaining importance in ensuring the long-term viability of digital objects.
Slurm User Group Mailing List
0
National Public Radio (NPR)
0
Pluses and challenges of mentor selection. Offers tips for acquiring a mentor (finding, asking). And how to be a good mentee. SMART framework mentioned. Discrimination mentioned. Difference between mentor and sponsor underlined. More than one mentor encouraged. Good tips.
Resource to active inference
0
Active inference is an emerging study field in machine learning and computational neuroscience. This website in particular introduces "active inference institute", which has established a couple of years ago, and contains a wide variety of resources for understanding the theory of active inference and for participating a worldwide active inference community.
R for Research Scientists
0
A book for researchers who contribute code to R projects: This booklet is the result of my work with the Social Cognition for Social Justice lab. It was developed in response to questions I was getting from students; both grad students that were making software design decisions, and undergraduates who were using things like version control for the first time. Although many tutorials and resources exist for these topics, there was not a single source that I thought covered just enough material to build up to the workflow used by the lab without extraneous detail.
Conda
0
Conda is a popular package management system. This tutorial introduces you to Conda and walks you through managing Python, your environment, and packages.
marimo | a next generation python notebook
0
Introduction seminar for new reactive python notebook from marimo ambassador.
Warewulf documentation
0
Warewulf is an operating system provisioning platform for Linux that is designed to produce secure, scalable, turnkey cluster deployments that maintain flexibility and simplicity. It can be used to setup a stateless provisioning in HPC environment.
Astronomy data analysis with astropy
0
Astropy is a community-driven package that offers core functionalities needed for astrophysical computations and data analysis. From coordinate transformations to time and date handling, unit conversions, and cosmological calculations, Astropy ensures that astronomers can focus on their research without getting bogged down by the intricacies of programming. This guide walks you through practical usage of astropy from CCD data reduction to computing galactic orbits of stars.
Scikit-Learn: Easy Machine Learning and Modeling
0
Scikit-learn is free software machine learning library for Python. It has a variety of features you can use on data, from linear regression classifiers to xg-boost and random forests. It is very useful when you want to analyze small parts of data quickly.
DELTA Introductory Video
0
Introductory video about DELTA. Speaker Tim Boerner, Senior Assistant Director, NCSA
Info about retiring of R GIS packages rgdal, rgeos, maptools in 2023
0
- Progress on R-spatial evolution, Apr 2023 Update
- Progress on R-spatial evolution, Dec 2022 Update
- R-spatial evolution: retirement of rgdal, rgeos and maptools
- Documentation for Terra
- Documentation for SF
R GIS packages "rgdal", "rgeos", and "maptools" are package set to be archived and no longer supported by end of 2023. Many other R GIS packages are build on top of these packages, including "sp" and "raster". The packages recommended as replacement for "sp" is "sf" and the replacement for "raster" is "terra". Below are links to published articles regarding this transition. Additionally, I am including links to the documentation for the new packages recommended to be used "sf" and "terra".