Samtools Documentation
0
Samtools is a suite of programs for interacting with high-throughput sequencing data, especially in the SAM/BAM format. It offers various utilities for processing, analyzing, and managing sequence data generated from next-generation sequencing (NGS) experiments. Samtools is widely used in bioinformatics and genomics research for tasks such as read alignment, variant calling, and data manipulation.
How to use Rclone
0
Learn how to use Rclone to transfer data, specifically from your local drive to the Open Storage Network, vice versa.
Charliecloud User Group
0
Announcements for for users and developers of Charliecloud, which provides lightweight user-defined software stacks for high-performance computing.
Master’s in Cybersecurity Degree Essentials
0
Offers comprehensive information on various master's degree options in cybersecurity, including program details, admission requirements, and career opportunities, helping students make informed decisions about pursuing an advanced degree in cybersecurity.
Introduction to Parallel Computing Tutorial
0
The tutorial is intended to provide a brief overview of the extensive and broad topic of Parallel Computing. It covers the basics of parallel computing, and is intended for someone who is just becoming acquainted with the subject .
TensorFlow for Deep Neural Networks
0
TensorFlow is a powerful framework for Deep Learning, developed by google. This specifically is their python package, which is easy to use and can be used to train incredibly powerful models.
Quick and Robust Data Augmentation with Albumentations Library
0
Data augmentation is a crucial step in the pipeline for image classification with deep learning. Albumentations is an extremely versatile Python library that can be used to easily augment images. Transformations include rotations, flips, downscaling, distortions, blurs, and many more.
Citation:
Buslaev A, Iglovikov VI, Khvedchenya E, Parinov A, Druzhinin M, Kalinin AA. Albumentations: Fast and Flexible Image Augmentations. Information. 2020; 11(2):125. https://doi.org/10.3390/info11020125
Installing Rocky Linux Operating System
0
Rocky Linux is an open-source enterprise operating system. It is compatible with Red Hat Enterprise Linux (RHEL). It is a community-driven project that provides a stable and reliable platform for production workloads. It is one of the best alternatives to Opensource CentOS, since Centos will be on end of life (EoL) soon in 2024 by shifting to CentOS Stream.
How to Build a Great Relationship with a Mentor
0
Emphasizes benefits of being mentored. Describes how to identify and choose a mentor. Suggests a path forward. Not mentor or two-way focused.
Introductory Tutorial to Numpy and Pandas for Data Analysis
0
In this tutorial, I present an overview with many examples of the use of Numpy and Pandas for data analysis. Beginners in the field of data analysis can find It incredibly helpful, and at the same time, anyone who already has experience in data analysis and needs a refresher can find value in it. I discuss the use of Numpy for analyzing 1D and 2D multidimensional data and an introduction on using Pandas to manipulate CSV files.
Slurm User Group Mailing List
0
Data Imputation Methods for Climate Data and Mortality Data
0
- Data Imputation Methods for Climate Data and Mortality Data - Slices
- Github repository
- Data Imputation Methods for Climate Data and Mortality Data - Full Tutorial
This slices and videos introduced how to use K-Nearest-Neighbors method to impute climate data and how to use Bayesian Spatio-Temporal models in R-INLA to impute mortality data. The demos will be added soon.
A visual introduction to Gaussian Belief Propagation
0
This website is an interactive introduction to Gaussian Belief Propagation (GBP). A probabilistic inference algorithm that operates by passing messages between the nodes of arbitrarily structured factor graphs. A special case of loopy belief propagation, GBP updates rely only on local information and will converge independently of the message schedule. The key argument is that, given recent trends in computing hardware, GBP has the right computational properties to act as a scalable distributed probabilistic inference framework for future machine learning systems.
Linux Tutorial from Ryan's Tutorials
0
The following pages are intended to give you a solid foundation in how to use the terminal, to get the computer to do useful work for you. You won't be a Unix guru at the end but you will be well on your way and armed with the right knowledge and skills to get you there if that's what you want (which you should because that will make you even more awesome). Here you will learn the Linux command line (Bash) with our 13 part beginners tutorial. It contains clear descriptions, command outlines, examples, shortcuts and best practice. At first, the Linux command line may seem daunting, complex and scary. It is actually quite simple and intuitive (once you understand what is going on that is), and once you work through the following sections you will understand what is going on. Unix likes to take the approach of giving you a set of building blocks and then letting you put them together. This allows us to build things to suit our needs. With a bit of creativity and logical thinking, mixed in with an appreciation of how the blocks work, we can assemble tools to do virtually anything we want. The aim is to be lazy. Why should we do anything we can get the computer to do for us? The only reason I can think of is that you don't know how (but after working through these pages you will know how, so then there won't be a good reason). A question that may have crossed your mind is "Why should I bother learning the command line? The Graphical User Interface is much easier and I can already do most of what I need there." To a certain extent you would be right, and by no means am I suggesting you should ditch the GUI. Some tasks are best suited to a GUI, word processing and video editing are great examples. At the same time, some tasks are more suited to the command line, data manipulation (reporting) and file management are some good examples. Some tasks will be just as easy in either environment. Think of the command line as another tool you can add to your belt. As always, pick the best tool for the job.
Weka
0
Weka is a collection of machine learning algorithms for data mining tasks. It contains tools for data preparation, classification, regression, clustering, association rules mining, and visualization.
Warewulf documentation
0
Warewulf is an operating system provisioning platform for Linux that is designed to produce secure, scalable, turnkey cluster deployments that maintain flexibility and simplicity. It can be used to setup a stateless provisioning in HPC environment.
Time-Series LSTMs Python Walkthrough
0
A walkthrough (with a Google Colab link) on how to implement your own LSTM to observe time-dependent behavior.
Resource to active inference
0
Active inference is an emerging study field in machine learning and computational neuroscience. This website in particular introduces "active inference institute", which has established a couple of years ago, and contains a wide variety of resources for understanding the theory of active inference and for participating a worldwide active inference community.
Building Anaconda Navigator applications
0
This tutorial explains how to create an Anaconda Navigator Application (app) for JupyterLab. It is intended for users of Windows, macOS, and Linux who want to generate an Anaconda Navigator app conda package from a given recipe. Prior knowledge of conda-build or conda recipes is recommended.
Info about retiring of R GIS packages rgdal, rgeos, maptools in 2023
0
- Progress on R-spatial evolution, Apr 2023 Update
- Progress on R-spatial evolution, Dec 2022 Update
- R-spatial evolution: retirement of rgdal, rgeos and maptools
- Documentation for Terra
- Documentation for SF
R GIS packages "rgdal", "rgeos", and "maptools" are package set to be archived and no longer supported by end of 2023. Many other R GIS packages are build on top of these packages, including "sp" and "raster". The packages recommended as replacement for "sp" is "sf" and the replacement for "raster" is "terra". Below are links to published articles regarding this transition. Additionally, I am including links to the documentation for the new packages recommended to be used "sf" and "terra".
Header-only C++ JSON library
0
JSON is a lightweight format for storing and transporting data, for example in a config file. This library is header-only, and has easy-to-read documentation. It is a C++ library.
Developer Stories Podcast
0
As developers, we get excited to think about challenging problems. When you ask us what we are working on, our eyes light up like children in a candy store. So why is it that so many of our developer and software origin stories are not told? How did we get to where we are today, and what did we learn along the way? This podcast aims to look “Behind the Scenes of Tech’s Passion Projects and People.” We want to know your developer story, what you have built, and why. We are an inclusive community - whatever kind of institution or country you hail from, if you are passionate about software and technology you are welcome!
MOPAC
0
MOPAC (Molecular Orbital PACkage) is a semi-empirical quantum chemistry package used to compute molecular properties and structures by using approximations of the Schrödinger equation. This tutorial explains the process of using MOPAC for different forms of calculations.
Cybersecurity Guide
0
Cybersecurity Guide is a comprehensive resource for students and early career professionals that provides users with a wide range of resources and up-to-date information on cybersecurity, including cybersecurity degree programs and bootcamps, career guides, as well as online courses and training opportunities. Additionally, it covers trends, best practices, and much more.