Anvil Home Page
0
Purdue University is the home of Anvil, a powerful supercomputer that provides advanced computing capabilities to support a wide range of computational and data-intensive research spanning from traditional high-performance computing to modern artificial intelligence applications.
An Introduction to the Julia Programming Language
0
The Julia Programming Language is one of the fastest growing software languages for AI/ML development. It writes in manner that's similar to Python while being nearly as fast as C++, while being open source, and reproducible across platforms and environments. The following link provide an introduction to using Julia including the basic syntax, data structures, key functions, and a few key packages.
Intro to Machine Learning on HPC
0
This tutorial introduces machine learning on high performance computing (HPC) clusters. While it focuses on the HPC clusters at The University of Arizona, the content is generic enough that it can be used by students from other institutions.
Horovod: Distributed deep learning training framework
0
Horovod is a distributed deep learning training framework. Using horovod, a single-GPU training script can be scaled to train across many GPUs in parallel. The library supports popular deep learning framework such as TensorFlow, Keras, PyTorch, and Apache MXNet.
How to Get the Most Out of a Mentoring Relationship by The Plank Center
0
Backed by collegiate white papers, top industry professionals, and researchers, The Plank Center’s Mentorship Guide offers basic tips and tricks on how to get the most out of a mentorship relationship. This easy-to-follow guide supplements mentorship programs, lesson plans, and professional relationships.
Jetstream Home
0
Jetstream2 makes cutting-edge high-performance computing and software easy to use for your research regardless of your project’s scale—even if you have limited experience with supercomputing systems.Cloud-based and on-demand, the 24/7 system includes discipline-specific apps. You can even create virtual machines that look and feel like your lab workstation or home machine, with thousands of times the computing power.
Open Storage Network
0
The Open Storage Network, a national resource available through the XSEDE resource allocation system, is high quality, sustainable, distributed storage cloud for the research community.
Reinforcement Learning For Beginners with Python
0
This course takes through the fundamentals required to get started with reinforcement learning with Python, OpenAI Gym and Stable Baselines. You'll be able to build deep learning powered agents to solve a varying number of RL problems including CartPole, Breakout and CarRacing as well as learning how to build your very own/custom environment!
Introduction to Parallel Programming for GPUs with CUDA
0
This tutorial provides a comprehensive introduction to CUDA programming, focusing on essential concepts such as CUDA thread hierarchy, data parallel programming, host-device heterogeneous programming model, CUDA kernel syntax, GPU memory hierarchy, and memory optimization techniques like global memory coalescing and shared memory bank conflicts. Aimed at researchers, students, and practitioners, the tutorial equips participants with the skills needed to leverage GPU acceleration for scalable computation, particularly in the context of AI.
Campus Research Computing Consortium (CaRCC)
0
CaRCC – the Campus Research Computing Consortium – is an organization of dedicated professionals developing, advocating for, and advancing campus research computing and data and associated professions.
Vision: CaRCC advances the frontiers of research by improving the effectiveness of research computing and data (RCD) professionals, including their career development and visibility, and their ability to deliver services and resources for researchers. CaRCC connects RCD professionals and organizations around common objectives to increase knowledge sharing and enable continuous innovation in research computing and data capabilities.
Harnessing the Power of Cloud and Machine Learning for Climate and Ocean Advances
0
- Harnessing the Power of Cloud and Machine Learning for Climate and Ocean Advances
- Github for Outputs of Presentation
Documentation and presentation on how to use machine learning and deep learning framework using TensorFlow, Keras and sci-kit learn for Climate and Ocean Advances
Neurostars
0
A question and answer forum for neuroscience researchers, infrastructure providers and software developers.
Training an LSTM Model in Pytorch
0
This google colab notebook tutorial demonstrates how to create and train an lstm model in pytorch to be used to predict time series data. An airline passenger dataset is used as an example.
Introduction to MP
0
Open Multi-Processing, is an API designed to simplify the integration of parallelism in software development, particularly for applications running on multi-core processors and shared-memory systems. It is an important resource as it goes over what openMP and ways to work with it. It is especially important because it provides a straightforward way to express parallelism in code through pragma directives, making it easier to create parallel regions, parallelize loops, and define critical sections. The key benefit of OpenMP lies in its ease of use, automatic thread management, and portability across various compilers and platforms. For app development, especially in the context of mobile or desktop applications, OpenMP can enhance performance by leveraging the capabilities of modern multi-core processors. By parallelizing computationally intensive tasks, such as image processing, data analysis, or simulations, apps can run faster and more efficiently, providing a smoother user experience and taking full advantage of the available hardware resources. OpenMP's scalability allows apps to adapt to different hardware configurations, making it a valuable tool for developers aiming to optimize their software for a range of devices and platforms.
How to use Rclone
0
Learn how to use Rclone to transfer data, specifically from your local drive to the Open Storage Network, vice versa.
Introduction to Parallel Computing Tutorial
0
The tutorial is intended to provide a brief overview of the extensive and broad topic of Parallel Computing. It covers the basics of parallel computing, and is intended for someone who is just becoming acquainted with the subject .
High performance computing 101
0
An introductory guide to High Performance Computing.
How-To Video: ACCESS Allocations
0
This video will walk you through the process of efficiently utilizing and managing your ACCESS project(s). Here, you’ll find instructions on how to request resources, extend the end date of a project, renew a request, and all the other necessary tasks to successfully manage your project.
Quick and Robust Data Augmentation with Albumentations Library
0
Data augmentation is a crucial step in the pipeline for image classification with deep learning. Albumentations is an extremely versatile Python library that can be used to easily augment images. Transformations include rotations, flips, downscaling, distortions, blurs, and many more.
Citation:
Buslaev A, Iglovikov VI, Khvedchenya E, Parinov A, Druzhinin M, Kalinin AA. Albumentations: Fast and Flexible Image Augmentations. Information. 2020; 11(2):125. https://doi.org/10.3390/info11020125
Introductory Tutorial to Numpy and Pandas for Data Analysis
0
In this tutorial, I present an overview with many examples of the use of Numpy and Pandas for data analysis. Beginners in the field of data analysis can find It incredibly helpful, and at the same time, anyone who already has experience in data analysis and needs a refresher can find value in it. I discuss the use of Numpy for analyzing 1D and 2D multidimensional data and an introduction on using Pandas to manipulate CSV files.
What are LSTMs?
0
This reading will explain what a long short-term memory neural network is. LSTMs are a type of neural networks that rely on both past and present data to make decisions about future data. It relies on loops back to previous data to make such decisions. This makes LSTMs very good for predicting time-dependent behavior.
iOS CoreML + SwiftUI Image Classification Model
0
This tutorial will teach step-by-step how to create an image classification model using Core ML in XCode and integrate it into an iOS app that will use the user's iPhone camera to scan objects and predict based on the image classification model.
Metadata Systems
0
Metadata is a vital topic in libraries and librarianship, encompassing structured information used for accessing digital resources. The definition of metadata varies but is essentially data about data. It has evolved beyond simply describing metadata schemas and now focuses on topics like interoperability, non-descriptive metadata (administrative and preservation metadata), and the effective application of metadata schemas for user discovery. Interoperability, the ability to seamlessly exchange metadata between systems, is a major concern. Different levels of interoperability are examined, including schema-level, record-level, and repository-level. Challenges to interoperability include variations in standards, collaboration barriers, and costs.Metadata management is discussed in terms of the holistic management of metadata across an entire library. Steps include analyzing metadata requirements, adopting schema, creating metadata content, delivery/access, evaluation, and maintenance. Administrative metadata, which encompasses ownership and production information, is becoming more critical, particularly for electronic resource licensing. Preservation metadata is also gaining importance in ensuring the long-term viability of digital objects.