OpenStack Tutorial For Beginners
0
OpenStack Tutorial For Beginners
Examples of code using JSON nlohmann header only Library for C++
0
This code showcases how to work with the header-only nlohmann JSON library for C++. In order to compile, change the extensions from json_test.txt to json_test.cpp and test.txt to test.json. You must also download the header files from https://github.com/nlohmann/json. Complilation instructions are at the bottom of json_test. This code is very helpful for creating config files, for example.
Women in HPC
0
Through collaboration and networking, WHPC strives to bring together women in HPC and technical computing while encouraging women to engage in outreach activities and improve the visibility of inspirational role models.
Feed Forward NNs and Gradient Descent
0
Feed-forward neural networks are a simple type of network that simply rely on data to be "fed-forward" through a series of layers that makes decisions on how to categorize datum. Gradient descent is a type of optimization tool that is often used to train machines. These two areas in ML are good starting points and are the easiest types of neural network/optimization to understand.
Machine Learning with sci-kit learn
0
In the realm of Python-based machine learning, Scikit-Learn stands out as one of the most powerful and versatile tools available. This introductory post serves as a gateway to understanding Scikit-Learn through explanations of introductory ML concepts along with implementations examples in Python.
RMACC Systems Administrator Workshop Slides
0
A compilation of the slides from this year's RMACC Sys Admin Workshop.
RMACC Sys Admin Workhop Schedule:
Tuesday
12:00 PM Sign-in
1:00 PM Introductions
1:30 PM Lightning Talk - HPC Survival guide
2:00 PM Node Management - Scott Serr
2:30 PM Lightning Talk - Warewulf
3:00 PM Urgent HPC - Coltran Hophan-Nichols and Alexander Salois
Wednesday
9:00 AM Breakfast
10:00 AM Round table Sites - BYU, INL, UMT, ASU, MSU
11:00 AM Open OnDemand setup - Dean Anderson
11:30 AM Lightning talk - Long term hardware support
12:00 PM Lunch
1:00 PM HPC Security - Matt Bidwell
2:00 PM Lightning talk- Security
2:30 PM ACCESS resources - Couso
3:00 PM Easybuild tutorial - Alexander Salois
3:30 PM General Q & A
Thursday
9:00 AM Breakfast
10:00 AM Lightning Talk- Containers and Virtual Machines
11:00 AM University of Montana - Hellgate Site Tour
11:30 AM Closing Remarks
An Introduction to the Julia Programming Language
0
The Julia Programming Language is one of the fastest growing software languages for AI/ML development. It writes in manner that's similar to Python while being nearly as fast as C++, while being open source, and reproducible across platforms and environments. The following link provide an introduction to using Julia including the basic syntax, data structures, key functions, and a few key packages.
Advanced Compilers: The Self-Guided Online Course
0
This is a self guided online course on compilers. The topics covered throughout the course include universal compilers topics like intermediate representations, data flow, and “classic” optimizations as well as more research focusedtopics such as parallelization, just-in-time compilation, and garbage collection.
ACCESS Campus Champion Example Allocation
0
ACCESS requests proposals to be written following NSF proposal guidelines. The link provides an example of an ACCESS proposal using an NSF LaTeX template. The request is at the DISCOVER level appropriate for Campus Champions. The file is 2 pages: the first page details the motivation, approach, and resources requested; and the second page is a 1-page bio.
Discover Data Science
0
Discover Data Science is all about making connections between prospective students and educational opportunities in an exciting new, hot, and growing field – data science.
GPU Acceleration in Python
0
This tutorial explains how to use Python for GPU acceleration with libraries like CuPy, PyOpenCL, and PyCUDA. It shows how these libraries can speed up tasks like array operations and matrix multiplication by using the GPU. Examples include replacing NumPy with CuPy for large datasets and using PyOpenCL or PyCUDA for more control with custom GPU kernels. It focuses on practical steps to integrate GPU acceleration into Python programs.
Campus Research Computing Consortium (CaRCC)
0
CaRCC – the Campus Research Computing Consortium – is an organization of dedicated professionals developing, advocating for, and advancing campus research computing and data and associated professions.
Vision: CaRCC advances the frontiers of research by improving the effectiveness of research computing and data (RCD) professionals, including their career development and visibility, and their ability to deliver services and resources for researchers. CaRCC connects RCD professionals and organizations around common objectives to increase knowledge sharing and enable continuous innovation in research computing and data capabilities.
Paraview UArizona HPC links (advanced)
0
These links take you to visualization resources supported by the University of Arizona's HPC visualization consultant ([rtdatavis.github.io](http://rtdatavis.github.io/)). The following links are specific to the Paraview program and the workflows that have been used my researchers at the U of Arizona. These links are distinct from the others posted in the beginner paraview access ci links from the University of Arizona in that they are for more complex workflows. The links included explain how to use the terminal with paraview (pvpython), and the steps to leverage HPC resources for headless batch rendering. The batch rendering tutorial is significantly more complex than the others so if you find yourself stuck please post on the https://ask.cyberinfrastructure.org/ and I will try to troubleshoot with you.
Introductory Python Lecture Series
0
A lecture and notes with the goal of teaching introductory python. Starting by understanding how to download and start using python, then expanding to basic syntax for lists, arrays, loops, and methods.
Jetstream Home
0
Jetstream2 makes cutting-edge high-performance computing and software easy to use for your research regardless of your project’s scale—even if you have limited experience with supercomputing systems.Cloud-based and on-demand, the 24/7 system includes discipline-specific apps. You can even create virtual machines that look and feel like your lab workstation or home machine, with thousands of times the computing power.
Big Data Research at the University of Colorado Boulder
0
Background: Big data, defined as having high volume, complexity or velocity, have the potential to greatly accelerate research discovery. Such data can be challenging to work with and require research support and training to address technical and ethical challenges surrounding big data collection, analysis, and publication.
Methods: The present study was conducted via a series of semi-structured interviews to assess big data methodologies employed by CU Boulder researchers across a broad sample of disciplines, with the goal of illuminating how they conduct their research; identifying challenges and needs; and providing recommendations for addressing them.
Findings: Key results and conclusions from the study indicate: gaps in awareness of existing big data services provided by CU Boulder; open questions surrounding big data ethics, security and privacy issues; a need for clarity on how to attribute credit for big data research; and a preference for a variety of training options to support big data research.
Introduction to MP
0
Open Multi-Processing, is an API designed to simplify the integration of parallelism in software development, particularly for applications running on multi-core processors and shared-memory systems. It is an important resource as it goes over what openMP and ways to work with it. It is especially important because it provides a straightforward way to express parallelism in code through pragma directives, making it easier to create parallel regions, parallelize loops, and define critical sections. The key benefit of OpenMP lies in its ease of use, automatic thread management, and portability across various compilers and platforms. For app development, especially in the context of mobile or desktop applications, OpenMP can enhance performance by leveraging the capabilities of modern multi-core processors. By parallelizing computationally intensive tasks, such as image processing, data analysis, or simulations, apps can run faster and more efficiently, providing a smoother user experience and taking full advantage of the available hardware resources. OpenMP's scalability allows apps to adapt to different hardware configurations, making it a valuable tool for developers aiming to optimize their software for a range of devices and platforms.
Vulkan Support Survey across Systems
0
It's not uncommon to see beautiful visualizations in HPC center galleries, but the majority of these are either rendered off the HPC or created using programs that run on OpenGL or custom rasterization techniques. To put it simply the next generation of graphics provided by OpenGL's successor Vulkan is strangely absent in the super computing world. The aim of this survey of available resources is to determine the systems that can support Vulkan workflows and programs. This will assist users in getting past some of the first hurdles in using Vulkan in HPC contexts.
High performance computing 101
0
An introductory guide to High Performance Computing.
MPI Resources
0
Workshop for beginners and intermediate students in MPI which includes helpful exercises. Open MPI documentation.
Jetstream2 Docs Site
0
Jetstream2 makes cutting-edge high-performance computing and software easy to use for your research regardless of your project’s scale—even if you have limited experience with supercomputing systems.Cloud-based and on-demand, the 24/7 system includes discipline-specific apps. You can even create virtual machines that look and feel like your lab workstation or home machine, with thousands of times the computing power.