Weka
0
Weka is a collection of machine learning algorithms for data mining tasks. It contains tools for data preparation, classification, regression, clustering, association rules mining, and visualization.
National Public Radio (NPR)
0
Pluses and challenges of mentor selection. Offers tips for acquiring a mentor (finding, asking). And how to be a good mentee. SMART framework mentioned. Discrimination mentioned. Difference between mentor and sponsor underlined. More than one mentor encouraged. Good tips.
Machine Learning in R online book
0
The free online book for the mlr3 machine learning framework for R. Gives a comprehensive overview of the package and ecosystem, suitable from beginners to experts. You'll learn how to build and evaluate machine learning models, build complex machine learning pipelines, tune their performance automatically, and explain how machine learning models arrive at their predictions.
Time-Series LSTMs Python Walkthrough
0
A walkthrough (with a Google Colab link) on how to implement your own LSTM to observe time-dependent behavior.
Mechanism and Implementation of Various MPI Libraries
0
There is a detailed explanation about communication routines and managing methods of different MPI libraries, as well as several exercises designed for users to get familiar with the implementation of MPI build process.
Building Anaconda Navigator applications
0
This tutorial explains how to create an Anaconda Navigator Application (app) for JupyterLab. It is intended for users of Windows, macOS, and Linux who want to generate an Anaconda Navigator app conda package from a given recipe. Prior knowledge of conda-build or conda recipes is recommended.
Git Branching Workflow and Maneuvers
0
A couple of resources that:
1.) Presents and defends a git branching workflow for stable collaborative git based projects. ("A Successful Git Branching Model")
2.) Maps "What do you want to do?" to the commands necessary to accomplish it. ("Git Flight Rules")
OpenHPC: Beyond the Install Guide
0
Materials for the "OpenHPC: Beyond the Install Guide" half-day tutorial, first offered at PEARC24. The goal of this repository is to let instructors or self-learners to construct one or more OpenHPC 3.x virtual environments, for those environments to be as close as possible to the defaults from the OpenHPC installation guide, and to then use those environments to demonstrate several topics beyond the basic installation guide.
Topics include:
1. Building a login node that's practically identical to a compute node (except for where it needs to be different)
2. Adding more security to the SMS and login node
3. Using node-local storage for the OS and/or scratch
4. De-coupling the SMS and the compute nodes (e.g., independent kernel versions)
5. GPU driver installation (simulated/recorded, not live)
6. Easier management of node differences (GPU or not, diskless/single-disk/multi-disk, Infiniband or not, etc.)
7. Slurm configuration to match some common policy goals (fair share, resource limits, etc.)
Developer Stories Podcast
0
As developers, we get excited to think about challenging problems. When you ask us what we are working on, our eyes light up like children in a candy store. So why is it that so many of our developer and software origin stories are not told? How did we get to where we are today, and what did we learn along the way? This podcast aims to look “Behind the Scenes of Tech’s Passion Projects and People.” We want to know your developer story, what you have built, and why. We are an inclusive community - whatever kind of institution or country you hail from, if you are passionate about software and technology you are welcome!
MOPAC
0
MOPAC (Molecular Orbital PACkage) is a semi-empirical quantum chemistry package used to compute molecular properties and structures by using approximations of the Schrödinger equation. This tutorial explains the process of using MOPAC for different forms of calculations.
DELTA Introductory Video
0
Introductory video about DELTA. Speaker Tim Boerner, Senior Assistant Director, NCSA
NERSC Training and Tutorials
0
A comprehensive collection of NERSC developed training and tutorial events, offered on regular schedules. All sessions are archived, including slide decks, video recordings, and software examples as are available. Some examples of past training and tutorial topics are listed below
Deep Learning for Sciences Webinar Series
BerkeleyGW Tutorial Workshop
VASP Trainings
Timemory Software Monitoring Tutorial, April 2021
HPCToolkit to Measure and Analyzing GPU Applications Performance Tutorial
Totalview Tutorial
NVidia HPCSDK - OpenMP Target Offload Training
Parallelware Training Series
ARM Debugging and Profiling Tools Tutorial
Roofline on NVIDIA GPUs
GPUs for Science events
3-part OpenACC Training Series
9-part CUDA Training Series
Solving differential equations with Physics-informed Neural Network
0
Differential equations, the backbone of countless physical phenomena, have traditionally been solved using numerical methods or analytical techniques. However, the advent of deep learning introduces an intriguing alternative: Physics-Informed Neural Networks (PINNs). By leveraging the representational power of neural networks and integrating physical laws (like differential equations), PINNs offer a novel approach to solving complex problems. This guide walks through an implementation of a PINN to solve DEs such as the logistic equation.
Representation Learning in Deep Learning
0
Representation learning is a fundamental concept in machine learning and artificial intelligence, particularly in the field of deep learning. At its core, representation learning involves the process of transforming raw data into a form that is more suitable for a specific task or learning objective. This transformation aims to extract meaningful and informative features or representations from the data, which can then be used for various tasks like classification, clustering, regression, and more.
Rockfish at Johns Hopkins University
0
Resources and User Guide available at Rockfish
Examples of Thrust code for GPU Parallelization
0
Some examples for writing Thrust code. To compile, download the CUDA compiler from NVIDIA. This code was tested with CUDA 9.2 but is likely compatible with other versions. Before compiling change extension from thrust_ex.txt to thrust_ex.cu. Any code on the device (GPU) that is run through a Thrust transform is automatically parallelized on the GPU. Host (CPU) code will not be. Thrust code can also be compiled to run on a CPU for practice.
Bioinformatics Workflow Management with Nextflow
0
Nextflow is an open-source, domain-specific language and workflow manager designed for the execution and coordination of scientific and data-intensive computational workflows. It was specifically created to address the challenges faced by researchers and scientists when dealing with complex and scalable computational pipelines, particularly in fields such as bioinformatics, genomics, and data analysis.
Here provided some links to start with.
HPCwire
0
HPCwire is a prominent news and information source for the HPC community. Their website offers articles, analysis, and reports on HPC technologies, applications, and industry trends.
ACCESS Guide (originally given at Duke OIT)
0
A guide for Duke OIT on how to advise users on using ACCESS and allocation credits to jetstream 2 for Duke University members. This can be used for non Duke members. Assumes the reader has basic knowledge of ACCESS.
Anvil Documentation
0
Documentation for Anvil, a powerful supercomputer at Purdue University that provides advanced computing capabilities to support a wide range of computational and data-intensive research spanning from traditional high-performance computing to modern artificial intelligence applications.
Python Tools for Data Science
0
Python has become a very popular programming language and software ecosystem for work in Data Science, integrating support for data access, data processing, modeling, machine learning, and visualization. In this webinar, we will describe some of the key Python packages that have been developed to support that work, and highlight some of their capabilities. This webinar will also serve as an introduction and overview of topics addressed in two Cornell Virtual Workshop tutorials, available at https://cvw.cac.cornell.edu/pydatasci1 and https://cvw.cac.cornell.edu/pydatasci2
OnShape FeatureScripts: Custom features for everyone
0
OnShape FeatureScripts allow users to create their own features via OnShape's programming language. The user can make these as simple or complex as they need, and they can save tons of time for heavy OnShape users or complex projects!
GIS: What is a Geodetic Datums?
0
Often when working with GIS, or spatial data, one encounters the word "datum" and it may require that you choose a "datum" when doing GIS computation tasks. Below is a short video on what are datums from NOAA and UCAR.
OpenStack Tutorial For Beginners
0
OpenStack Tutorial For Beginners